Various types of valves may be used in water system piping. These include:

(1) Check valves
(2) Line check valves
(3) Foot valves
(4) Shut-off valves
(5) Flow-control valves
(6) Pressure-relief valves

Check Valves to Control Flow

Check valves are used to hold pressure in the system when the pump stops. They also prevent backspin, water hammer and upthrust inside the pump. Any of these three conditions, or a combination of them, can lead to pump or motor failure, plus shortened service life or operating problems in the system.

More than one check valve should always be used in submersible pump installations. If the pump does not have a built-in check valve, a *line check valve* should be installed in the discharge pipe within 25 feet of the pump and below the drawdown level of the water in the well. For deeper settings, a line check valve is recommended every 200 feet.

Swing-type check valves should never be used with submersible pumps. With a swing-type valve, when the pump stops, there is a sudden reversal of flow before the valve closes, causing a sudden change in the velocity of the water.

Spring-load check valves should be used because they are designed to close quickly when the water flow stops and before it begins to move in the reverse direction. There is little or no velocity of flow when the spring-loaded valve closes and no hydraulic shock or water hammer is produced.
Weight of Pipe and Pump
The weight hanging below the check valve must be considered when the valve is installed and must be within the rating of the valve manufacturer. In a deep well installation or when more than 100 feet of pipe are below the valve, a heavy-duty valve or valve recommended by the manufacturer should be used. For higher weight applications, this type of heavy-duty valve may be referred to as a drop pipe check valve. Follow the manufacturer’s instructions for installation, because check valves are valves and must not be treated as a pipe coupling or damage to the valve could result.

Foot Valves
The operation of most shallow-well jet pumps and deep-well jet pumps is dependent, in part, on the proper functioning of the foot valve. This valve is installed at the end of the suction pipe or below the jet in the well to prevent back flow. Without a foot valve, suction lines will lose a prime every time the pump shuts off. This valve needs good positive shut off to prevent loss of prime and pump cycling when there is no demand.

Whenever possible, a foot valve should be used on shallow- and deep-well jet pump water systems to assure a positive prime from the water level in the well to the pump. This is necessary to protect vital pump parts such as rotary seals, sealing rings and other parts that may be damaged by heat if the pump operates without a water flow.

Shut-off Valves
Shut-off valves, such as gate valves or ball valves, should be installed between the tank and the supply line for the entire water system. This makes it possible to drain only the necessary portion of the system each time repairs or changes are made.

Flow-control Valves
Flow-control valves are used to reduce or limit the amount of pump capacity primarily to prevent an overload condition (high amps) on the motor and upthrust condition on the pump. When system conditions exist that could allow the pump to deliver too much capacity, a flow control valve may be installed to restrict or limit this flow to an adequate amount. Valves of this type are commonly installed on showers or other water-using appliances to limit the gallons-per-minute flow to these outlets. A set flow rate to equipment such as irrigation systems can also be maintained with flow-control valves.

Pressure-relief Valve
High pressure can result if the pressure switch that controls the pump is damaged, or if the pump stays on too long. Most submersible pumps can develop pressure exceeding the rated working limits of the pressure tank or distribution system. Excess water pressure can damage water system components as well as the pressure tank if not corrected immediately, so a pressure-relief valve is recommended. Relief valves are spring-controlled. For water service, these are generally adjusted to relieve pressure higher than 75 psi.

Well water naturally better... Contact your local water well professional
Whenever there is a question of safety, a relief valve should be used. A pressure and temperature relief valve is required by almost all plumbing codes for water heaters, and it is also important to install a pressure relief valve for water system tanks. The size and selection of the relief valve should be based on the capacity of the pump at the relief pressure setting, and it should have positive reseating. Discharge of relief valve should be directed to an adequate drain.

For more information on valves

For more information on your drinking water
The following websites provide up-to-date information on efforts to protect drinking water supplies and steps you can take as a private well owner. In addition, you may contact the wellcare® hotline at 1-888-395-1033.

Underwriters Laboratories Inc. Drink Well™ Well Water Testing www.uldrinkwell.com
U.S. Environmental Protection Agency www.epa.gov
Water Quality Association www.wqa.org

Other information about wells and well water can be found in the following wellcare® information sheets:

General Information about Wells:
- Determining the Depth of a Well
- Determining the Yield of a Well
- Ground Water
- Selecting a Well Contractor
- Sizing a Pressure Tank
- Sizing a Well Pump
- Wells
- Your Well & Septic System
- Coping with Low Water Levels
- Managing a Flooded Well
- Protecting Your Wellhead
- Protecting Your Well
- Well Maintenance
- Wells and Fire Protection
- Wells: What to do When Power Fails
- What To Do if the Well Runs Dry
- Boiling Your Drinking Water
- Disinfecting Your Well
- Drinking Water Testing
- Drinking Water Treatments
- Home Drinking Water Treatment Devices
- Testing Water for Gardening and Lawn Irrigation
- Understanding Drinking Water Test Results
- Buying a Home with a Well
- Closing an Abandoned Well
- Dillon’s Rule
- Ground Water Withdrawals
- Real Estate Professionals: Buying or Selling a Home with a Well
- Sanitarians – Closing a Well
- Sanitarians – Inspecting a Well
- Sanitarians – Wells & Septic Systems
- Shared Well Agreement
- Sharing a Well
- Water Conservation
- Who Owns the Water

Well Components:
- Your Pitless Adapter
- Valves
- Your Well Cap
- Your Well Casing
- Your Well Pump
- Your Well Tank

Well water naturally better... Contact your local water well professional
Possible Contaminants You May Find in Your Well Water:

- Arsenic
- Bacteria
- Benzene
- Chlorine Disinfectants & Their Byproducts
- Chromium
- Copper
- Emerging Water Contaminants
- Hardness in Drinking Water
- Iron
- Lead
- Mercury
- MTBE
- Nitrate and Nitrite
- Perchlorate
- Pesticides
- pH in Drinking Water
- Radium
- Radon
- Sulfur
- Trichloroethylene (TCE)
- Total Dissolved Solids (TDS)
- Turbidity in Drinking Water
- Uranium
- Volatile Organic Compounds (VOCs)
- Copper
- Hardness in Drinking Water
- Iron
- Lead
- Mercury
- MTBE
- Nitrate and Nitrite
- Perchlorate
- Pesticides
- pH in Drinking Water
- Radium
- Radon
- Sulfur
- Trichloroethylene (TCE)
- Total Dissolved Solids (TDS)
- Turbidity in Drinking Water
- Uranium
- Volatile Organic Compounds (VOCs)

For more information about wells and other wellcare® publications

wellcare® is a program of the Water Systems Council (WSC). WSC is a national nonprofit organization dedicated to promoting the wider use of wells as modern and affordable safe drinking water systems and to protecting ground water resources nationwide. This publication is one in a series of wellcare® information sheets. There were more than 60 available at the time this document was published. They can be downloaded FREE from the WSC website at www.watersystemscouncil.org. Well owners and others with questions about wells or ground water can also contact the wellcare® hotline at 888-395-1033 or visit www.wellcarehotline.org

This publication was developed in part under Assistance Agreement No. X-83256101-0 awarded by the U.S. Environmental Protection Agency. It has not been formally reviewed by EPA. The views expressed in this document are solely those of WSC. EPA does not endorse any products or commercial services mentioned in this publication.